17 research outputs found

    Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea

    Get PDF
    Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near‐physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV1.3−/− mice, prevented the normal developmental acquisition of mature‐like basolateral membrane currents in low‐frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV1.3−/− mice. The maturation of high‐frequency (basal) hair cells was also affected in CaV1.3−/− mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV1.3−/− mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low‐ and high‐frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience‐independent Ca2+ APs

    Age-related synaptic loss of the medial olivocochlear efferent innervation

    Get PDF
    Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis), a major cause of which is the loss of outer hair cells (OHCs) and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC) efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP), under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs

    Oncomodulin, an EF-hand Ca2+ buffer, is critical for maintaining cochlear function in mice

    Get PDF
    UNLABELLED: Oncomodulin (Ocm), a member of the parvalbumin family of calcium binding proteins, is expressed predominantly by cochlear outer hair cells in subcellular regions associated with either mechanoelectric transduction or electromotility. Targeted deletion of Ocm caused progressive cochlear dysfunction. Although sound-evoked responses are normal at 1 month, by 4 months, mutants show only minimal distortion product otoacoustic emissions and 70-80 dB threshold shifts in auditory brainstem responses. Thus, Ocm is not critical for cochlear development but does play an essential role for cochlear function in the adult mouse. SIGNIFICANCE STATEMENT: Numerous proteins act as buffers, sensors, or pumps to control calcium levels in cochlear hair cells. In the inner ear, EF-hand calcium buffers may play a significant role in hair cell function but have been very difficult to study. Unlike other reports of genetic disruption of EF-hand calcium buffers, deletion of oncomodulin (Ocm), which is predominately found in outer hair cells, leads to a progressive hearing loss after 1 month, suggesting that Ocm critically protects hearing in the mature ear

    Coordinated calcium signalling in cochlear sensory and non‐sensory cells refines afferent innervation of outer hair cells

    Get PDF
    Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine‐tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non‐sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non‐sensory cells of the greater epithelial ridge cause, via ATP‐induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience‐independent Ca2+ signals from sensory and non‐sensory cells

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Generation and Characterization of α9 and α10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background

    Get PDF
    We generated constitutive knockout mouse models for the α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits by derivation from conditional knockouts by breeding with CRE deleter mice. We then backcrossed them onto a C57BL/6J genetic background. In this manuscript, we report the generation of the strains and an auditory phenotypic characterization of the constitutive α9 and α10 knockouts and a double α9α10 constitutive knockout. Although the α9 and α10 nAChR subunits are relevant to a number of physiological measures, we chose to characterize the mouse with auditory studies to compare them to existing but different α9 and α10 nAChR knockouts (KOs). Auditory brainstem response (ABR) measurements and distortion product otoacoustic emissions (DPOAEs) showed that all constitutive mouse strains had normal hearing. DPOAEs with contralateral noise (efferent adaptation measurements), however, showed that efferent strength was significantly reduced after deletion of both the α9 and α10 subunits, in comparison to wildtype controls. Animals tested were 3–8 weeks of age and efferent strength was not correlated with age. Confocal studies of single and double constitutive KOs showed that all KOs had abnormal efferent innervation of cochlear hair cells. The morphological results are similar to those obtained in other strains using constitutive deletion of exon 4 of α9 or α10 nAChR. The results of our physiological studies, however, differ from previous auditory studies using a α9 KO generated by deletion of the exon 4 region and backcrossed onto a mixed CBA/CaJ X 129Sv background

    The Final Stage of Cholinergic Differentiation Occurs Below Inner Hair Cells During Development of the Rodent Cochlea

    No full text
    To gain further insights into the cholinergic differentiation of presynaptic efferent terminals in the inner ear, we investigated the expression of the high-affinity choline transporter (ChT1) in comparison to other presynaptic and cholinergic markers. In the adult mammalian cochlea, cholinergic axons from medial olivocochlear (OC) neurons form axosomatic synapses with outer hair cells (OHCs), whereas axons from lateral OC neurons form axodendritic synapses on afferent fibers below inner hair cells (IHCs). Mouse brain and cochlea homogenates reveal at least two ChT1 isoforms: a nonglycosylated ∌73 kDa protein and a glycosylated ∌45 kDa protein. In mouse brain, ChT1 is preferentially expressed by neurons in periolivary regions of the superior olive consistent with the location of medial OC neurons. In the adult mouse cochlea, ChT1-positive terminals are located almost exclusively below OHCs consistent with a medial OC innervation. Between postnatal day 2 (P2) and P4, ChT1-positive terminals are below IHCs and occur after the expression of growth-associated protein 43, synapsin, and the vesicular acetylcholine transporter. By P15, ChT1-positive terminals are mostly on OHCs. Accounting for differences in gestational age, the developmental expression of ChT1 in the rat cochlea is similar to the mouse. However, in older rats ChT1-positive terminals are below IHCs and OHCs. In both rat and mouse, our observations indicate that the onset of ChT1 expression occurs after efferent terminals are below IHCs and express other presynaptic and cholinergic markers. In the mouse, but not in the rat, ChT1 may preferentially identify medial OC neurons
    corecore